

European HRAC Update on regional activities

EPPO Resistance Meeting September 16, 2021

EHRAC Member Companies

Marine DJEDDAH

Bernd SIEVERNICH

Mark BARTLETT, Xavier BELVAUX, Hubert MENNE

Eileen PATERSON, Marisa SALAS

Gilles BERTIN, David HENNENS

Barrie HUNT

Simon MOYAL

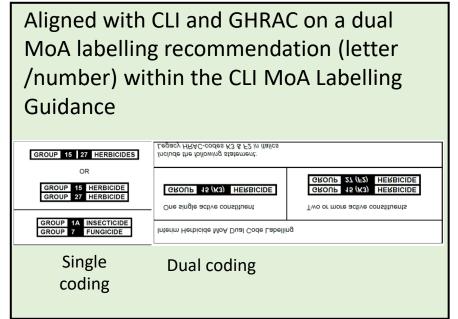
Matt CORDINGLEY

Marc BONNET

- 9 companies
- 13 members
- Chair (2021-2022)
 Bernd SIEVERNICH, BASF
- <u>Co-Chair</u>
 Mark BARTLETT (BAYER)
- <u>Coordinator</u>
 Alan PORTER (external)
- ~5 meetings/year
 Feb / Apr / July / Sept / Nov
 preferably one F2F
- 3 Working Groups

WG New MoA-Classification

HRAC	Legacy HRAC		HRAC	Legacy HRAC	
1	Α	Inhibition of ACCase	19	Р	Auxin transport inhibitors
2	В	Inhibition of ALS	22	D	PS I electron diversion
3	K1	Inhibition of microtubule assembly	23	K2	Inhibition of microtubule organization
4	0	Auxin mimics	24	М	Uncouplers
7	U		27	F2	Inhibition of HPPD
5	C1,2	Inhibition of photosynthesis PS II – Serine 264	28	none	Inhibition of dihydroorotate dehydrogenase
6	C3	Inhibition of photosynthesis PS II – Histidine 215	29	L	Inhibition of cellulose synthesis
9	G	Inhibition of EPSP synthase	30	Q	Inhibition of fatty acid thioesterase
10	н	Inhibition of glutamine synthetase	31	R	Inhibition of serine threonine protein phosphatase
12	F1	Inhibition of PDS	32	S	Inhibition of solanesyl diphosphate synthase
13	F4	Inhibition of DOXP synthase	3.83		Inhibition of homogentisate
14	E	Inhibition of PPO	33	Т	solanesyltransferase
15	K3	Inhibition of VLCFAs	34	F3	Inhibition of lycopene cyclase
18	- 1	DHP inhibition	Ø	Z	Unknown mode of action


GHRAC

- Published a new MoA-classification in 2020
 - Transition from alphabetical to numerical codes
 - Addition of 5 new or re-classified MoA-groups
 - Rationalization of chemical family names
 - Addition of 15 new active substances

EHRAC activities

Communication on the new HRAC MoA-system (e.g. on national and international conferences) to promote a fast implementation and utilization in practice

Providing practical advise how to handle integration of former group N into new group 15 (K3)

Subola HRAC supports combination or sequence of active ingredients belonging to forente Groups N and ACI (new Group 15)

It is the Discording to forente Groups N and ACI (new Group 15)

It is the Discording to forente Groups N and ACI (new Group 15)

It is the Discording to forente Groups N and ACI (new Group 15)

It is the Discording to forente Groups N and ACI (new Group 15)

It is the Discording to forente Groups N and ACI (new Group 15)

It is the Discording to forente Groups N and ACI (new Group 15)

It is the Discording to forente Groups N and ACI (new Group 15)

It is the Discording to forente Groups N and ACI (new Group 15)

It is the Discording to forente Groups N and ACI (new Group 15)

It is the Discording to forente Groups N and ACI (new Group 15)

It is the Discording to forente Groups N and ACI (new Group 15)

It is the Discording to forente Groups N and ACI (new Group 15)

It is the Discording to forente Groups N and ACI (new Group 15)

It is the Discording to forente Groups N and ACI (new Group 15)

It is the Discording to forente Groups N and ACI (new Group 15)

It is the Discording to forente Groups N and ACI (new Group 15)

It is the Discording to forente Groups N and ACI (new Group 15)

It is the Discording to forente Groups N and ACI (new Group 15)

It is the Discording to forente Groups N and ACI (new Group 15)

It is the Discording to forente Groups N and ACI (new Groups N and ACI (ne

Aligned with GHRAC to
further support
combination or
sequence of active
substance belonging
to former Groups N
and K3 (new Group 15)

---Internal Use---

WG Herbicide Resistance Country Working Groups

- Connect to national European resistance working groups to promote exchange and collaboration
- EHRAC survey sent out summer 2020 to known Country Working Groups
 - 1. to introduce EHRAC and provide information on current activities.
 - to learn about the structure and actions of the ongoing national working groups and
 - to determine how communication between the organizations could be improved and develop effective long-term collaboration
- Key expectations of EHRAC:
 - Help connecting with the working groups in other countries
 - Help setting up national working groups in the countries where there is none
 - Facilitate a smooth transition to the new HRAC MoA classification by providing information
 - to regulatory and advisory bodies
 - Data dissemination, knowledge sharing and collaborative actions
 - Be an active group (not only an online page), sharing ideas/actions/research with the national country groups
- Virtual meeting scheduled for November 09, 2021

Contacted Countries

WG Weed Fact Sheets

- Provide information related to the
 - Biology,
 - Resistance status and
 - Best Management Practise
 - of important European weeds prone to develop resistance
- Shall provide a quick overview on information related to the importance and problem severity
- Does not list individual cases of resistance
- Support given by well acknowledged scientist and institutes
- First round started with:
 - Apera spica-venti
 - Bromus sterilis
 - Echinochloa crus-galli
 - Lolium spp

Weed Fact Sheet Apera spica-venti

Apera spica-venti is the most common grass weed species in winter cereals in Denmark, Germany, Poland, Czech Republic, Słovakia, Lithuania, Latvia and Austria, but also present in Belgium, Netherlands. Luxembourg, France, Switzerland, Sweden, Belarus, Ukraine and Russia. The importance is high due to high densities, competition ability and large portion of winter annual crops in rotation.

Weed Biology

EPPO-codes/m²	APESV		
Lifecycle	Annual, winter annual		
Germination window	Mostly autumn up to early spring		
Max. generation/year	i		
Seed shattering	Before Harvest		
Occurence in crop or cultivation system	Mostly related to cereals		
Yield loss	2-8 kg/ha per plant/m² (threshold: "30 plts/m² (lowest in rye, highest in wheat)		
Preferred environmental conditions	Lighter soils (sandy to sandy loam) tolerates temperate/continental winter climate		

Ploidy	Diploid (2n=14)		
Pollination	Cross-pollinating		
pollen dispersal	By wind		
Seed shattering	Before Harvest		
Fecundity (seeds/plant)	"2000 - 20000 depending on crop competition		
Seed dispersal	By wind		
Distance of seed dispersal	few meters from parent plant		
Dormancy	law		
Seed bank longevity	1-2 up to 7 years		
Seed decline per year	~20-30%		

Impact of Agronomic Measures on Occurence and Spread

Crop rotation

- Occurrence favored by wnter cropping (esp. Winter cereals)
- Germination predominantly in September till November
- Minor problem in winter oilseed rape due to effective control by Group 15 (K3) herbicides (VLCFA)
- Occurrence in spring crops possible, but not common

Soil cultivation

- profits from high percentage of non-inversion tillage
- Alternating conversion and non-conversion tillage is seen as a better strategy than annual ploughing only
- seed dormancy during summer time reduces control effects of stubble tillage

Crop sowing date

 late drilling or stale seedbed preparation possible, but potentially less effective compared to other grasses due to long germination pariod

rop/varieties (competitiveness)

- Rye is a better competitor compared to other cereals, but strongly depends also on factors influencing crop vigour, e.g. rye cultivated on sandy soil is less competitive compared to more fertile soil conditions
- varieties many have a big influence in competition with APESV e.g. hybrids barley suppress APESV better

HRAC Europe 2021

Recent resistance cases: www.weedscience.org

Date last updated	Species	Country	First Year	Crop	Site of action
August 30, 2021	Amaranthus retroflexus	Ukraine	2020	Corn (maize), and Sunflower	Inhibition of Acetolactate Synthase HRAC group 2/B
August 11 2021	Alopecurus myosuroides	Switzerland	2019	Wheat, and Winter barley	Multiple resistance: 2 sites Inhibition of the Acetyl CoA Carboxylasa HRAC group 1/A Inhibition of Acetolactate Synthase HRAC group 2/B
August 11 2021	Lolium perenne spp. multiflorum	Switzerland	2018	Sugar beets, and Triticale	Multiple resistance: 2 sites Inhibition of the Acetyl CoA Carboxylasa HRAC group 1/A Inhibition of Acetolactate Synthase HRAC group 2/B
August 11 2021	Lolium perenne spp. multiflorum	Switzerland	2018	Peas	Multiple resistance: 2 sites Inhibition of Acetolactate Synthase HRAC group 2/B Inhibition to PSII – Ser264 binder HRAC group 5/ C1, C2
August 11 2021	Sorghum halepense	Serbia	2018	Soybean	Multiple resistance: 2 sites Inhibition of the Acetyl CoA Carboxylasa HRAC group 1/A Inhibition of Acetolactate Synthase HRAC group 2/B
March 9, 2021	Oryza sativa var. sylvatica	Turkey	2020	Rice	Inhibition of Acetolactate Synthase HRAC group 2/B
August 19, 2019	Conyza sumatrensis	Turkey	2019	Peaches	Inhibition of Enolpyruvyl Shikimate Phosphate Synthase HRAC Group 9/G
December 16, 2020	Bromus rubens	Spain	2018	Almonds, Olive, and Orchards	Inhibition to Enolpyruvyl shikimate phosphate synthase HRAC group 9/G
November 26, 2020	Bromus madritensis	Spain	2018	Grapes, and Olive	Inhibition to Enolpyruvyl shikimate phosphate synthase HRAC group 9/G
June 22, 2020	Hordeum murinum ssp. leporinum	Spain	2018	Olive, and Orchards	Inhibition of Enolpyruvyl Shikimate Phosphate Synthase HRAC Group 9 (Legacy G)
September 2, 2019	Rapistrum rugosum	Spain	2018	Winter barley, and Winter wheat	Inhibition of Acetolactate Synthase HRAC Group 2 (Legacy B)
November 13, 2020	Elusine indica	Italy	2019	Nurseries	Inhibition to Enolpyruvyl shikimate phosphate synthase HRAC group 9/G
October 20, 2020	Amaranthus tubeculatus (=A. radis)	Israel	2019	Corn (maize), Cotton, and Sunflower	Inhibition of Acetolactate Synthase HRAC group 2/B
October 1, 2020	Apera spica venti	Belgium	2019	Wheat	Inhibition of Acetolactate Synthase HRAC group 2/B

Recent resistance cases

Date last updated	Species	Country	First Year	Crop	Site of action
October 24, 2019 Capsella bursa-pastoris		Norway	2019	Wheat	Inhibition of Acetolactate Synthase HRAC Group 2 (Legacy B)
July 3, 2020	Conyza canadiensis	France	2019	Grapes	Inhibition to Enolpyruvyl shikimate phosphate synthase HRAC group 9/G
May 13, 2019	Galinsonga parviflora	France	2018	Endive	Inhibition of Acetolactate Synthase HRAC Group 2/B
December 15, 2018	Lolium perenne spp. multiflorum	France	2018	Wheat	Very Long-Chain Fatty Acid Synthesis inhibitors HRAC Group 15/K3,N
September 10, 2020	Avena fatua	Ireland	2019	Spring Barley, and Winter barley	Inhibition of the Acetyl CoA Carboxylasa HRAC group 1/A